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Abstract

We analyze general model selection procedures using penalized empirical loss minimiza-
tion under computational constraints. While classical model selection approaches do not
consider computational aspects of performing model selection, we argue that any practical
model selection procedure must not only trade off estimation and approximation error,
but also the effects of the computational effort required to compute empirical minimizers
for different function classes. We provide a framework for analyzing such problems, and
we give algorithms for model selection under a computational budget. These algorithms
satisfy oracle inequalities that show that the risk of the selected model is not much worse
than if we had devoted all of our computational budget to the best function class.

1 Introduction

In the standard statistical prediction setting, one receives samples {z1, . . . , zn} ⊆ Z drawn i.i.d. from
some unknown distribution P over a sample space Z, and given a loss function `, seeks a function
f to minimize the risk

R(f) := E[`(z, f)]. (1)

Since R(f) is unknown, the typical approach is to (approximately) minimize the empirical risk,

R̂n(f) := 1
n

∑n
i=1 `(zi, f), over a function class F . We seek a function fn with a risk close to the

Bayes risk, the minimal risk over all measurable functions, which is R0 := inff R(f). There is a
natural tradeoff based on the class F one chooses, since

R(fn)−R0 =

(
R(fn)− inf

f∈F
R(f)

)
+

(
inf
f∈F

R(f)−R0

)
,

which decomposes the excess risk of fn into estimation error (left) and approximation error (right).
A common approach to addressing this tradeoff is to express F as a union of classes F1, . . . ,Fk.

The model selection problem is to choose a class Fi and a function f ∈ Fi to give the best trade-
off between estimation error and approximation error.1 A common approach to the model selection
problem is the now classical idea of complexity regularization, which arose out of early works by Mal-
lows (1973) and Akaike (1974). The complexity regularization approach balances two competing
objectives: the minimum empirical risk of a model class Fi (approximation error) and a complexity
penalty (to control estimation error) for the class. Different choices of the complexity penalty give
rise to different model selection criteria and algorithms (see e.g. Massart, 2003, and the references
therein). Results of several authors (e.g. Bartlett et al., 2002; Lugosi and Wegkamp, 2004; Massart,

2003) show that given a dataset of size n, the output f̂n of the procedure roughly satisfies

ER(f̂n)−R0 ≤ min
i

[
inf
f∈Fi

R(f)−R0 + γi(n)

]
+Op

(
1√
n

)
, (2)

where γi(n) is a complexity penalty for class i, which is usually decreasing to zero in n and increasing
in i. (Several approaches to complexity regularization are possible, and an incomplete bibliography

1In general, the number of classes K can be infinite, though we restrict attention to finitely many classes
for this paper.



includes Vapnik and Chervonenkis, 1974; Geman and Hwang, 1982; Rissanen, 1983; Barron, 1991;
Bartlett et al., 2002; Lugosi and Wegkamp, 2004).

These oracle inequalities show that, for a given sample size, the model selection procedure gives
the best trade-off between the approximation and estimation errors. A drawback with the above
mentioned approaches is that we need to be able to optimize over each model in the hierarchy on
the entire data, in order to prove guarantees on the result of the model selection procedure. This is
natural when the sample size is the key limitation, and it is computationally feasible when the sample
size is small and the samples are low-dimensional. However, the cost of training K different model
classes on the entire data sequence can be prohibitive when the datasets become large and high-
dimensional as is common in modern settings. In these cases, it is computational resources—rather
than the sample size—that are the key constraint. In this paper, we consider model selection from
this computational perspective, viewing the amount of computation, rather than the sample size,
as the parameter which will enter our oracle inequalities. Specifically, we consider model selection
methods that work within a given computational budget.

An interesting and difficult aspect of the problem that we must address is the interaction between
model class complexity and computation time. It is natural to assume that for a fixed sample size,
it is more expensive to estimate a model from a complex class than a simple class. Put inversely,
given a computational bound, a simple model class can fit a model to a much larger sample size than
a rich model class. So any strategy for model selection under a computational budget constraint
should trade off two criteria: (i) the relative training cost of different model classes, which allows
simpler classes to receive far more data (thus making them resilient to overfitting), and (ii) lower
approximation error in the more complex model classes.

In addressing these computational and statistical issues, this paper makes three main contribu-
tions. First, we propose a novel computational perspective on the model selection problem, which
we believe should be a natural consideration in statistical learning problems. Secondly, within this
framework, we provide an algorithm—exploiting algorithms for multi-armed bandit problems—that
uses confidence bounds based on concentration inequalities to select a good model under a given
computational budget. We also prove a minimax optimal oracle inequality on the performance of
the selected model. Our third main contribution is another algorithm based on a coarse-grid search,
for model hierarchies that are structured by inclusion, that is, F1 ⊆ F2 ⊆ . . . ⊆ FK . Under natural
assumptions regarding the growth of the complexity penalties as we go to more complex classes, the
coarse-grid search procedure satisfies better oracle inequalities than the earlier bandit algorithm.
Both of our algorithms are computationally simple and efficient.

The remainder of this paper is organized as follows. In the next section, we formalize our setting
and present the algorithms. Section 3 presents our main results as well as some consequences for
specific problems and examples. We provide proofs in Sections 4 through 5; Section 4 contains the
proof of the result for unstructured model selection problems, while Sec. 5 contains the proofs of
oracle inequalities for model selection problems with nested classes Fi.

2 Setup and algorithms

In this section, we will describe our statistical and computational assumptions about the problem,
giving examples of classes of problems and statistical procedures that satisfy the assumptions. We
will follow this with descriptions of our algorithms, including intuitive explanations of the procedures.

2.1 Setup and Goals

Recall from the introduction that we have a collection of K model classes F1, . . . ,FK . Let us begin
by describing our computational assumptions. First, we assume as our basic unit of measure a
computational quantum; within this quantum, a model can be trained on any single class Fi using
ni samples. That is, we associate with each class Fi a number of samples ni ∈ N, where ni is chosen
so that training a model from class Fi on ni examples requires the same amount of time as training
a model from class Fj on nj samples. We assume an overall time budget of T quanta, so that if we
devote the entire computational budget to class i, we could use Tni samples to train a model.2 Our
high level goal is to derive algorithms that perform nearly as well as if an oracle gave the best model
class i∗ in advance, and we could devote the entire computational budget T to class i∗.

For the statistical assumptions in our problem, we take an approach similar to that of Bartlett
et al. (2002), restricting our attention to complexity penalties based on concentration inequalities.

2The linearity assumption is essentially no loss of generality. In addition, several algorithms satisfy it.
We can work with general non-linear scalings too, at the cost of significant notational burden which we
choose to avoid here.
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Each of our model selection procedures uses a black-box algorithm A for fitting functions from
the model class Fi to the data. We require that these algorithms be statistically well-behaved,

in the sense that the empirical risk of A’s output model f̂ is near the true risk of f̂ . Recalling

the definitions of R, R̂ from the introduction, and defining [K] = {1, . . . ,K}, we state our main
concentration assumption:

Assumption A. Let A (i, n) ∈ Fi denote the output of algorithm A on a sample of n data points.

(a) For each i ∈ [K], there is a function γi and constants κ1, κ2 > 0 such that for any n ∈ N,

P
(
|R̂n(A (i, n))−R(A (i, n))| > γi(n) + κ2ε

)
≤ κ1 exp(−4nε2). (3)

(b) The output A (i, n) is a γi(n)-minimizer of R̂n, that is,

R̂n(A (i, n))− inf
f∈Fi

R̂n(f) ≤ γi(n).

(c) The function γi(n) ≤ cin−αi for some αi > 0.

(d) For any fixed function f ∈ Fi, P(|R̂n(f)−R(f)| > κ2ε) ≤ κ1 exp(−4nε2).

There are many classes of functions and corresponding algorithms that satisfy Assumption A.
For one simple example, let {Fi} be VC-classes of functions, where each Fi has VC-dimension di,
and ` be the hinge loss, where `(z, f) = [1 − yf(x)]+. Assuming that `(z, f) ≤ B for all f ∈ F ,
Dudley’s entropy integral in this case gives (Dudley, 1978)

γi(n) = O
(√

di
n

)
and κ1 ≤ 2, κ2 = O(B). (4)

Similar results hold for other convex losses and problems, for example regression and density estima-
tion problems with squared or log losses. For function classes of bounded complexity, such as VC,
Sobolev, or Besov classes, penalty functions γi(n) can be computed that satisfy Assumption A using
many techniques; some relevant approaches include Rademacher and Gaussian complexities of the
function classes Fi, metric entropy, Dudley’s entropy integral, or localization techniques (e.g. Pol-
lard, 1984; Bartlett and Mendelson, 2002; Dudley, 1967). In many concrete cases, such as parametric
models or VC classes, Assumption A(c) is satisfied with αi = 1

2 .
Our approach, similar to the idea of complexity regularization, is to perform a kind of penalized

model selection. If we knew the true risk functional R, we could minimize a combination of the risk
and complexity penalty based on the number of samples our computational budget allows for the
class. In particular, given penalty functions γi, we define the best class in hindsight as

i∗ := argmin
i∈[K]

{
inf
f∈Fi

R(f) + γi(Tni)

}
. (5)

The idea is that an algorithm performing model selection—while taking into account its computa-
tional limitations—should choose the best class considering the total number of samples it could
possibly have seen for the class. We note that this is also closely related to the criterion (2) min-
imized in the absence of a computational budget, but in the classical case it is assumed that each
function class can be evaluated on an identical and fixed number of samples n.

2.2 Upper-confidence bound algorithm without structure

We now turn to outlining the first of the two main scenarios analyzed in this paper. For now, we do
not assume any structure relating the collection of model classes F1, . . . ,FK . The main idea of our
algorithm in this case is to incrementally allocate our computational quota amongst the function
classes, where we trade off receiving samples for classes that have good risk performance against
exploring classes for which we have received few data points. We view the budgeted model selection
problem as a repeated game with T rounds. At iteration t, the procedure allocates one additional
quantum of computation to a (to be specified) function class i. We assume that the computational
complexity of fitting a model grows linearly and incrementally with the number of samples, which
means that allocating an additional quantum of training time allows the black-box training algorithm
A to process an additional ni samples for class Fi. The linear growth assumption is satisfied, for
instance, when the loss function ` is convex and the black-box learning algorithm A is a stochastic or
online convex optimization procedure (e.g. Cesa-Bianchi and Lugosi, 2006; Nemirovski et al., 2009).
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Algorithm 1 Multi-armed bandit algorithm for selection of best class î.

Foreach i ∈ [K] query ni examples from class Fi
For t = K + 1 to T

Set ni(t) to be the number of examples seen for class i at time t

Let it = argmini∈[K]R(j, ni(t))−
√

log T
ni(t)

Query nit examples for class it
Output î, the index of the most frequently selected class.

Using our previously defined notation, we now define the criterion we use in our procedure to
select the class i to which we allocate a quantum. The optimistic selection criterion for class i,
assuming that Fi has seen n samples at this point in the game, is

R(i, n) = R̂n(A (i, n))− γi(n)−
√

logK

n
+ γi(Tni). (6)

The intuition behind the definition of R(i, n) is that we would like the algorithm to choose functions f

and classes i that minimize R̂n(f)+γi(Tni) ≈ R(f)+γi(Tni), but the negative γi(n) and
√

logK/n
terms lower the criterion significantly when n is small and thus encourage initial exploration. The
criterion (6) essentially combines the penalized model-selection objective used by Bartlett et al.
(2002) (though we use a logK term, as we assume a finite number of classes) with an optimistic
criterion similar to those used in multi-armed bandit algorithms (Auer et al., 2002). Algorithm 1
contains our bandit procedure for model selection. We run Alg. 1 for T rounds, where T is such that
the entire computational budget is exhausted. Our results in Section 3.1 show that Alg. 1 satisfies
our twofold goals of selecting the class i∗ with high probability and outputting a function f with
good risk performance.

2.3 Coarse-grid search algorithm for inclusion hierarchy

In practice, the classes Fi are rarely completely unrelated; perhaps the most common scenario in
model selection is structural risk minimization, where the model classes Fi are subsets ordered in
increasing complexity of a larger model space. To that end, our second main scenario involves
studying computationally constrained model selection procedures under the following assumption.

Assumption B. The function classes Fi satisfy an inclusion hierarchy:

F1 ⊆ F2 ⊆ · · · ⊆ FK (7)

One simple example satisfying above assumption is classes of functions of the form x 7→ f(x) = 〈θ, x〉,
where each function class F is identified with an increasing bound on ‖θ‖. A second simple family
of examples consists of scenarios in which f ∈ Fi is of the form x 7→ f(x) = 〈θ, φi(x)〉 where φi is
a feature mapping of the input data Z and φi is a projection of φi+1. For example, functions in
class i + 1 observe more features than those in class i or the different classes Fi may consist of an
increasing sequence of wavelet bases.

Intuitively, we expect the structure assumed above to help our model selection procedure because
the minimum expected risks of different function classes are no longer independent of each other. It
is easy to see that under our assumption,

R∗i ≤ R∗j for i ≥ j. (8)

Clearly, under Assumption B, the penalties can always be chosen to be increasing as a function of
the class complexity:

γi(n) ≥ γj(n) for i ≥ j. (9)

Since our approach involves giving a different number of samples to each class, we require a slightly
stronger ordering than the above equation. We assume that for any budget T , we have

γi(Tni) ≥ γj(Tnj) for i ≥ j. (10)

This assumption is reasonable since we expect that γi(n) is a decreasing function of n and ni ≤ nj
for i ≥ j, so that γi(Tni) ≥ γi(Tnj) ≥ γj(Tnj).

We now show a simple grid-search based algorithm that gives oracle inequalities depending only
logarithmically on the number of classes for this inclusion hierarchy under natural conditions on the
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growth of the complexity penalties as a function of the class index i. The method takes inspiration
from the näıve strategy that splits the budget T uniformly across the K classes and finds the class
with the smallest penalized empirical risk, using Tni/K samples for class i. Of course, the näıve
approach has the drawback that the computational budget available to each class is reduced by a
factor of K, which yields very poor scaling with the number K of classes.

The key observation we exploit is that under the nesting structure (7), we do not need to find the
smallest regularized empirical risk for each class. We can instead pick a small subset S of classes and
perform model selection only over the classes in S, then use the inclusion assumption B to reason
about the classes not in S for appropriate choices of S. With this intuition, we now define a good
choice for S:

Definition 1 (Coarse grid). For a set S ⊆ [K], we say that S satisfies the coarse grid conditions
with parameters s ∈ N and λ > 0 if |S| = s and for each i ∈ [K] there is an index j ∈ S such that

γi

(
Tni
s

)
≤ γj

(
Tnj
s

)
≤ (1 + λ)γi

(
Tni
s

)
. (11)

We define s(λ) to be the size of the smallest set S satisfying condition (11), noting that s(λ) ≤ K. In
general, for a given λ there may be no small set S satisfying Definition 1; however, we are interested
in settings where a set S of size s(λ) = O(logK) exists.

Example 1. Let {Fi} be an increasing collection of VC-classes, say f ∈ Fi is of the form x 7→
f(x) = 〈θ, φi(x)〉 where φi is a di-dimensional mapping and Fi has VC-dimension di. In this

case, recalling the VC-bound (4), we know that (up to constant factors) γi(n) ≤
√
di/n. Making

the reasonable assumption that training time is linearly dependent on the VC dimension, we have
ni = nK(dK/di) for i ∈ [K], so

γi(Tni) = γi

(
TnKdK
di

)
≤

√
d2
i

TnKdK
= di ·

1√
TnKdK

.

Example 1 is suggestive of a pattern common to many hierarchies of function classes—including
parametric and VC-classes with i indexing VC-dimension—where the penalty functions interact with
the sample sizes ni so that γi splits naturally into a product γi(Tni) = g(T )h(i) for some functions
g and h (which may depend on K). For such cases, the condition (11) reduces to ensuring

g

(
T

s(λ)

)
h(i) ≤ g

(
T

s(λ)

)
h(j) ≤ (1 + λ)g

(
T

s(λ)

)
h(i),

which amounts to showing h(i) ≤ h(j) ≤ (1 + λ)h(i) independent of the setting of s(λ) (since h is
non-increasing, we need only show the latter inequality). Let S = {j1, . . . , js(λ)}. We construct S
by setting js(λ) = K and recursively defining ji to be the smallest index ji < ji+1 such that

h(ji+1) ≤ (1 + λ)h(ji).

Then the number of classes can be bounded by using the relation

h(K) = h(js(λ)) ≤ (1 + λ)h(js(λ)−1) ≤ · · · ≤ (1 + λ)s(λ)h(1),

so that so long as s(λ) ≥ log(h(K)/h(1))
log(1+λ) , we can choose a set S satisfying condition (11) with |S| =

s(λ). In particular, s(λ) is logarithmic in K as long as the function h grows sub-exponentially. Other
natural examples of function classes satisfying such growth conditions include Besov or Sobolev
function classes nested by degree or smoothness as well as wavelet bases. We refer the reader to the
work of Barron et al. (1999) for a compendium of results where γi(Tni) = g(T )h(i).

Given the above, our algorithm has a simple description. We fix a desired accuracy λ and find
the smallest set S satisfying Definition 1. We then pick the class î satisfying

î ∈ argmin
i∈S

{
R̂Tni/s(λ)(i) + γi (Tni/s(λ))

}
, (12)

where |S| = s(λ). We observe that the penalty functions are typically known in closed form (with
the exception of data-dependent complexity penalties), and hence computation of the set S can
be efficient and is (generally) much cheaper than training the models. In Section 3.2, we give an

oracle inequality on the performance of the estimate î from the procedure (12) that has only mild
dependence on the number of classes so long as s(λ) does not grow too fast with K.
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3 Main results and their consequences

In this section, we come to the description of the performance guarantees for Algorithms 1 and (12).
To build intuition, we also specialize the theorems to specific statistical problems and model classes.

3.1 Oracle inequalities for unstructured model classes

In this section we give performance guarantees on the class picked by Algorithm 1. We define the
excess penalized risk

∆i := R∗i + γi(Tni)−R∗i∗ − γi∗(Tni∗) ≥ 0. (13)

Essentially without loss of generality, we assume that the infimum in the equation R∗i = inff∈Fi R(f)
is attained by a function f∗i . If the infimum is not attained we simply choose some fixed f∗i such
that R(f∗i ) ≤ inff∈Fi

R(f) + δ for an arbitrarily small δ > 0. We first perform analysis under the
assumption that ∆i > 0 strictly for i 6= i∗, but we will then relax to allow non-unique i∗.

The gains of a computationally adaptive strategy over näıve strategies are best seen when the
gap (13) is non-zero. Under this assumption, we can follow the ideas of Auer et al. (2002) and show
that the fraction of the computational budget allocated to any suboptimal class i 6= i∗ goes quickly
to zero as T grows. We provide the proof of the following theorem in Section 4.

Theorem 1. Let Alg. 1 be run for T rounds and Ti(T ) be the number of times class i is queried.
Let ∆i be defined as in (13), the conditions of Assumption A hold, and assume that T ≥ K. Define
βi = max{1/αi, 2}. There is a constant C such that

E[Ti(T )] ≤ C

ni

(
ci + κ2

√
log T

∆i

)βi

and P

(
Ti(T ) >

C

ni

(
ci + κ2

√
log T

∆i

)βi
)
≤ κ1

TK4
,

where ci and αi come from the definition of the concentration function γi in Assumption A(c).

At a high level, this result shows that the fraction of budget allocated to any suboptimal class

goes to 0 at the rate 1
niT

(√
log T
∆i

)βi

. Hence, asymptotically in T , we will receive exponentially more

samples for i∗ than any other class and will perform almost as well as if we had known i∗ in advance.
To see an example of concrete rates that can be concluded from the above result, let F1, . . . ,FK be
model classes with finite VC-dimension,3 so that Assumption A is satisfied with αi = 1

2 . Then we
have

Corollary 1. Under the conditions of Theorem 1, assume F1, . . . ,FK are model classes of finite
VC-dimension, where Fi has dimension di. Then there is a constant C such that

E[Ti(T )] ≤ Cmax{di, κ2
2 log T}

∆2
ini

and P
(
Ti(T ) > C

max{di, κ2
2 log T}

∆2
ini

)
≤ κ1

TK4
.

The result of Corollary 1 is nearly optimal in general due to a lower bound for the special case of
multi-armed bandit problems (Lai and Robbins, 1985). To see the connection, let Fi correspond to
the ith arm in a multi-armed bandit problem and the risk R∗i be the expected reward of arm i. In this
case, the complexity penalty γi for each class is 0. Lai and Robbins give a lower bound that shows

that the expected number of pulls of any suboptimal arm is at least E[Ti(T )] = Ω
(

log T
KL(pi||pi∗ )

)
,

where pi and pi∗ are the reward distributions for the ith and optimal arms, respectively.
Unfortunately, the condition that ∆i > 0 may not always be satisfied, or ∆i may be so small as

to render the bound in Theorem 1 vacuous. Nevertheless, we intuitively believe that our algorithm
can quickly find a small set of “good” classes—those with small penalized risk—and spend its
computational budget to try to distinguish amongst them. In this case, though, Algorithm 1 will
not visit suboptimal classes and so can still output a function f satisfying good oracle bounds. In
order to prove a result quantifying this intuition, we first upper bound the regret of Algorithm 1,
that is, the average excess risk suffered by the algorithm over all iterations, and then show how to
use this bound for obtaining a model with a small risk. We state our results for the case where
αi ≡ α and define β = max{1/α, 2}.
Proposition 1. Use the same assumptions as Theorem 1, but further assume that αi ≡ α for all i.
With probability at least 1− κ1/TK

3, the regret (average excess risk) of Algorithm 1 is bounded as

K∑
i=1

∆iTi(T ) ≤ 2eT 1−1/β

(
C

K∑
i=1

(ci + κ2

√
log T )β

ni

)1/β

3Similar corollaries hold for any model class whose metric entropy grows as polylog
(
1
ε

)
.
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for a constant C dependent on α.

In order to obtain a model with a small risk, we need to make an additional assumption that the
models are compatible in the sense that one can define the addition operator f+g for f ∈ Fi, g ∈ Fj
meaningfully. We also assume that the risk functional R(f) is convex in f . In such a setting, we

can average the functions minimizing the objective R(i, n), that is, ft = argminf∈Fit
R̂ni(t)(f), to

obtain a function satisfying the desired oracle inequality. For this theorem, we also assume that the
constants ci from Assumption A(c) satisfy ci = O(

√
log T ).

Theorem 2. Use the same assumptions as Proposition 1. Let ft be the function chosen by algorithm

A at round t of Alg. 1 and define the average function f̂T = 1
T

∑T
t=1 ft. If the risk functional

R is convex, there are constants C, C ′ (dependent on α) such that with probability greater than
1− 2κ2/(TK

3),

R(f̂T ) ≤ R∗ + γi∗(Tni∗) + 2eκ2T
−β
√

log T

(
K∑
i=1

C

ni

)1/β

+ C ′ T−1/β

(
K∑
i=1

[
cin
−α
i + κ2n

− 1
2

i

√
logK + κ2n

− 1
2

i

√
log T

]β)1/β

.

Let us interpret the above bound and discuss its optimality. When α = 1
2 (e.g., for VC classes),

we have β = 2; moreover, it is clear that
∑K
i=1

C
ni

= O(K). Thus, to within constant factors, we
have

R(f̂T ) = R∗ + γi∗(Tni∗) +O

(√
K max{log T, logK}√

T

)
.

Ignoring logarithmic factors, the above bound is minimax optimal, which follows by a reduction
of our model selection problem to the special case of a multi-armed bandit problem. In this case,
Theorem 5.1 of Auer et al. (2003) shows that for any set of K,T values, there is a distribution

over the rewards of arms which forces Ω(
√
KT ) regret, that is, the average excess risk of the classes

chosen by Alg. 1 must be Ω(
√
KT ). We provide proofs of Proposition 1 and Theorem 2 in the long

version of the paper.

3.2 Oracle inequalities for nested hierarchies

In this section we provide an oracle inequality on the output of the procedure (12) that has a more
favorable dependence on the number of classes K than our bounds for unstructured function classes
Fi. The main idea is to use Assumption B along with Definition 1 to show that performing a coarse
grid search over S is sufficient to deduce an oracle inequality over the entire hierarchy. The next
theorem provides an oracle inequality for the risk of the function f = A(̂i, nîT/s(λ)), which is the

output of the learning algorithm A applied to the class î picked by our algorithm.

Theorem 3. Let f = A(̂i, nîT/s(λ)) be the output of the algorithm A for class î specified by the
procedure (12). Let Assumptions A–B hold. With probability at least 1− 3κ1 exp(−4m)

R(f) ≤ min
i∈[K]

{
R∗i + 2(1 + λ)γi

(
Tni
s(λ)

)}
+ κ2

√
s(λ) logK

2TnK
+ κ2

√
ms(λ)

TnK
.

Remark: It is possible to reduce the κ2

√
s(λ) logK/2TnK term in the bound above to a (1 +

λ)
√
s(λ) log i/2Tni term appearing inside the minimum over classes i ∈ [K] by requiring the coarse

grid condition (11) to hold over terms of the form γi(Tni/s(λ)) +
√
s(λ) log i/2Tni. This stronger

bound applies, for example, to sequences of VC-classes as described in Example 1.
The above result makes it clear that the excess risk of the algorithm—outside of the minimum

over all the classes—scales as O(T−1/2). It is of interest to contrast Theorem 3 with results of the

previous section. In the completely general case, we have a dependence on K better than
√
K only

when there is constant separation between the penalized risks of different classes. Since s(λ) ≤ K,
the result of the above theorem is essentially as strong as any of the results from the previous section,
as we would hope when we know Fi ⊆ Fi+1.

Nonetheless, the main strength of Theorem 3 is in scenarios where s(λ) = O(logK), such as VC-
classes (e.g. Example 1) with at most polynomial growth in VC-dimension. In such scenarios, the
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function f that the procedure outputs is competitive (up to logarithmic factors) with an oracle that
devotes the entire computation budget to the optimal class. We note that model selection procedures
suffer a penalty of

√
logK (or

√
log i) even in computationally unconstrained settings (see, e.g.,

Bartlett et al., 2002), so our computationally restricted procedure suffers at most an additional
penalty of O(

√
logK). We conclude by recalling that many common model selection scenarios

satisfy s(λ) = O(logK), as noted in Section 2.3.

4 Proof of Theorem 1

At a high level, the proof of this theorem involves combining the techniques for analysis of multi-
armed bandits developed by Auer et al. (2002) with Assumption A. We start by giving a lemma
which will be useful to prove the theorem. The lemma states that after a sufficient number of initial
iterations τ , the probability Algorithm 1 chooses to receive samples for a sub-optimal function class
i 6= i∗ is extremely small. Recall also our notational convention that βi = max{1/αi, 2}.
Lemma 1. For any class i, any si ∈ [1, T ] and si∗ ∈ [τ, T ] where τ > 0 satisfies

τ >
2βi(ci + κ2

√
log T + κ2

√
logK)βi

ni∆
βi

i

,

under Assumption A we have

P

(
R(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗

)
≤ 2κ1

(TK)4
.

We defer the proof of the lemma to Appendix A, though at a high level the proof works as follows.
The “bad event” in Lemma 1, that is, Algorithm 1 selects a sub-optimal class i 6= i∗, occurs only
if one of the following three errors occurs: the empirical risk of class i is much lower than its true
risk, the empirical risk of class i∗ is higher than its true risk, or si is not large enough to actually
separate the true penalized risks from one another. Under the assumptions of the lemma, however,
coupled with the uniform convergence properties in Assumption A, each of these three sub-events is
quite unlikely. Now we turn to the proof of Theorem 1 assuming the lemma.

Let it denote the model class index i chosen by Algorithm 1 at time t, and let si(t) denote
the number of times class i has been selected at round t of the algorithm. When no time index is
needed, si will denote the same thing. Note that if it = i and the number of times class i is queried
exceeds τ > 0, then by the definition of the selection criterion (6) and choice of it in Alg. 1, for some
si ∈ {τ, . . . , t− 1} and si∗ ∈ {1, . . . , t− 1} we have

R(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗
.

Here we interpret R(i, nisi) to mean a random realization of the observed risk consistent with the
samples we observe. Using the above implication, we thus have

Ti(n) = 1 +

T∑
t=K+1

I (it = i) ≤ τ +

T∑
t=K+1

I (it = i, Ti(t− 1) ≥ τ)

≤ τ +

T∑
t=K+1

I

(
min
τ≤si<t

R(i, nisi)− κ2

√
log T

nisi
≤ max

0<s<t
R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗

)

≤ τ +

T∑
t=1

t−1∑
si∗=1

t−1∑
si=τ

I

(
R(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗

)
. (14)

To control the last term, we invoke Lemma 1 and obtain that

τ >
2βi(ci + κ2

√
log T + κ2

√
logK)βi

ni∆
βi

i

⇒ E[Ti(n)] ≤ τ +

T∑
t=1

t−1∑
s=1

t−1∑
si=τ

2
κ1

(TK)4
≤ τ +

κ1

TK4
.

Hence for any suboptimal class i 6= i∗, E[Ti(n)] ≤ τi + κ1/(TK
4), where τi satisfies the lower bound

of Lemma 1 and is thus logarithmic in T . Under the assumption that T ≥ K, for i 6= i∗,

E[Ti(T )] ≤ C (ci + κ2

√
log T )max{1/αi,2}

ni∆
max{1/αi,2}
i

(15)
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for a constant C ≤ 2 · 4max{1/αi,2}. Now we prove the high-probability bound. For this part, we
need only concern ourselves with the sum of indicators from (14). Markov’s inequality shows that

P

(
T∑

t=K+1

I (it = i, Ti(t− 1) ≥ τ) ≥ 1

)
≤ κ1

TK4
.

Thus we can assert that the bound (15) on Ti(T ) holds with high probability.

Remark: By examining the proof of Theorem 1, it is straightforward to see that if we modify the
multipliers on the

√
· terms in the criterion (6) by mκ2 instead of κ2, we get that the probability

bound is of the order T 3−4m2

K−4m2

, while the bound on Ti(T ) is scaled by m1/αi .

5 Model selection over nested hierarchies

In this section, we prove Theorem 3. The following proposition states that the class returned by the
output of the procedure (12) satisfies an oracle inequality over the set S.

Proposition 2. Let f = A(̂i, nîT/s(λ)) be the output of the algorithm A for class î specified in
Equation 12. Under the conditions of Theorem 3, with probability at least 1− 3κ1 exp(−4m)

R(f) ≤ min
i∈S

R∗i + γi

(
Tni
s(λ)

)
+ κ2

√
s(λ) log i

2Tni

+ κ2

√
ms(λ)

TnK
.

The proof of the proposition follows from an argument similar to that given by Bartlett et al. (2002).
We present a proof at the end of this section, since our setting is slightly different: each class receives
a different number of independent samples. First, however, we complete the proof of Theorem 3
using the proposition.
Proof of Theorem 3 Let i ∈ [K] be any class (not necessarily in S), and let j ∈ S be the
smallest class satisfying j ≥ i. Then by construction of S, we know that

γi

(
Tni
s(λ)

)
≤ γj

(
Tnj
s(λ)

)
≤ (1 + λ)γi

(
Tni
s(λ)

)
.

Thus we can lower bound the penalized risk of class i as

R∗i + 2(1 + λ)γi

(
Tni
s(λ)

)
≥ R∗j + 2γj

(
Tnj
s(λ)

)
,

where we used the nesting assumption B to conclude that j ≥ i implies R∗j ≤ R∗i .
Now combining the above lower bound with the inequality in Proposition 2 yields that with

probability at least 1− 3κ1 exp(−m)

R(f) ≤ min
i∈S

R∗i + γi

(
Tni
s(λ)

)
+ κ2

√
s(λ) log i

2Tni

+

√
ms(λ)

TnK

≤ min
i∈[K]

{
R∗i + 2(1 + λ)γi

(
Tni
s(λ)

)}
+ κ2

√
s(λ) logK

2TnK
+ κ2

√
ms(λ)

TnK

since K ≥ i and ni ≥ nK .

Proof of Proposition 2 To prove the proposition, we would like to control the probability

P

R(f) > min
i∈S

R∗i + 2γi

(
Tni
s(λ)

)
+ κ2

√
s(λ) log i

2Tni

+ ε


≤ P

[
R(f) > min

i∈S

{
R̂Tni/s(λ)(i) + γi

(
Tni
s(λ)

)}
+ ε/2

]
︸ ︷︷ ︸

T1

(16)

+ P

min
i∈S

{
R̂Tni/s(λ)(i) + γi

(
Tni
s(λ)

)}
> min

i∈S

R∗i + 2γi

(
Tni
s(λ)

)
+ κ2

√
s(λ) log i

2Tni

+ ε/2


︸ ︷︷ ︸

T2
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where the inequality follows from a union bound.
We now bound the terms T1 and T2 separately. To bound the terms, we first observe that by

the construction (12), the minimum over the penalized empirical risk is attained for the class î. We
thus simplify T1 as

P
[
R(f) > min

i∈S

{
R̂Tni/s(λ)(i) + γi

(
Tni
s(λ)

)}
+ ε/2

]
= P

[
R(f) >

{
R̂(f) + γ̂i

(
Tnî
s(λ)

)}
+ ε/2

]
≤ κ1 exp

(
−
Tnîε

2

κ2
2s(λ)

)
,

where the inequality follows by application of Assumption A(a). To bound T2 in the sum (16), we
define f∗i = argminf∈Fi

R(f) so that R∗i = R(f). Noting that the event in T2 implies that

max
i∈S

R̂Tni/s(λ)(i)−R∗i − γi
(
Tni
s(λ)

)
− κ2

√
s(λ) log i

2Tni

 >
ε

2
,

we can use the union bound to see

T2 ≤ P

sup
i∈S

R̂Tni/s(λ)(i)−R∗i − γi
(
Tni
s(λ)

)
− κ2

√
s(λ) log i

2Tni

 >
ε

2


≤
∑
i∈S

P

R̂Tni/s(λ)(i)−R∗i − γi
(
Tni
s(λ)

)
− κ2

√
s(λ) log i

2Tni
>
ε

2


≤
∑
i∈S

P

R̂(f∗i )−R∗i >
ε

2
+ κ2

√
s(λ) log i

2Tni

 ,
where the final inequality uses Assumption A(b), which states that A outputs a γi-minimizer of the
empirical risk. Now we can bound the deviations using Assumption A(d), since f∗i is non-random:

T2 ≤
∑
i∈S

κ1 exp

(
− Tniε

2

s(λ)κ2
2

)
exp (−2 log i) .

Setting ε = κ2

√
ms(λ)
TnK

, see that the first term in bounding T2 reduces to exp(−mni/nK) ≤ exp(−m)

since ni ≥ nK . Then we get

T2 ≤
∑
i∈S

κ1 exp(−m) exp (−2 log i)

≤ 2κ1 exp(−m),

where the last step uses
∑∞
i=1 1/i2 = π2/6 ≤ 2. Finally, plugging the stated setting of ε into the

bound on T1 completes the proof.
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A Proof of Lemma 1

Following Auer et al. (2002), we show that the event in the lemma occurs with very low probability
by breaking it up into smaller events more amenable to analysis. Recall that we’re interested in
controlling the probability of the event

R(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗
(17)

For this bad event to happen, at least one of the following three events must happen:

R̂nisi(A (i, nisi))− inf
f∈Fi

R(f) ≤ −γi(nisi)− κ2

√
logK

nisi
− κ2

√
log T

nisi
(18a)

R̂ni∗si∗ (A (i∗, ni∗si∗))− inf
f∈Fi∗

R(f) ≥ γi(ni∗si∗) + κ2

√
logK

ni∗si∗
+ κ2

√
log T

ni∗si∗
(18b)

R∗i + γi(Tni) ≤ R∗ + γi∗(Tni∗) + 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log T

nisi

)
. (18c)

Temporarily use the shorthand fi = A (i, nisi) and fi∗ = A (i∗, ni∗si∗). The relationship between
Eqs. (18a)–(18c) and the event in (17) follows from the fact that if none of (18a)–(18c) occur, then

R(i, nisi)− κ2

√
log T

nisi

= R̂nisi(fi) + γi(Tni)− γi(nisi)− κ2

√
logK

nisi
− κ2

√
log T

nisi

(18a)
> inf

f∈Fi

R(f) + γi(Tni)− 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log t

nisi

)
(18c)
> inf

f∈Fi∗
R(f) + γi∗(Tni∗) + 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log T

nisi

)

− 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log n

nisi

)
(18b)
> R̂ni∗si∗ (fi∗) + γi∗(Tni∗)− γi(ni∗si∗)− κ2

√
logK

ni∗si∗
− κ2

√
log t

ni∗si∗

= R(i∗, ni∗si∗)− κ2

√
log t

ni∗si∗
.

From the above string of inequalities, to show that the event (17) has low probability, we need simply
show that each of (18a), (18b), and (18c) have low probability.

To prove that each of the bad events have low probability, we note the following consequences
of Assumption A. Recall the definition of f∗i as the minimizer of R(f) over the class Fi. Then by
Assumption A(a),

R(f∗i )− γi(n)− κ2ε ≤ R(A (i, n))− γi(n)− κ2ε < R̂n(A (i, n)),

while Assumptions A(b) and A(d) imply

R̂n(A (i, n)) ≤ R̂n(f∗i ) + γi(n) ≤ R(f∗i ) + γi(n) + κ2ε,

each with probability at least 1 − κ1 exp(−4nε2). In particular, we see that the events (18a) and
(18b) have low probability:

P

[
R̂nisi(A (i, nisi))−R(f∗i ) ≤ −γi(nisi)− κ2

√
logK

nisi
− κ2

√
log T

nisi

]

≤ κ1 exp

(
−4nisi

(
logK

nisi
+

log t

nisi

))
=

κ1

(tK)4

P

[
R̂ni∗si∗ (A (i∗, ni∗si∗))−R∗ ≥ γi∗(ni∗si∗) + κ2

√
logK

ni∗si∗
+ κ2

√
log T

ni∗si∗

]

≤ κ1 exp

(
−4ni∗si∗

(
logK

ni∗si∗
+

log T

ni∗si∗

))
=

κ1

(tK)4
.
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What remains is to show that for large enough τ , (18c) does not happen. Recalling the definition
that R∗ + γi∗(Tni∗) = R∗i + γi(Tni)−∆i, we see that for (18c) to fail it is sufficient that

∆i > 2γi(τni) + 2κ2

√
logK

niτ
+ 2κ2

√
log T

niτ
.

Let x ∧ y := min{x, y} and x ∨ y := max{x, y}. Since γi(n) ≤ cin−αi , the above is satisfied when

∆i

2
> ci(τni)

−(αi∧ 1
2 ) + κ2

√
logK(τni)

−(αi∧ 1
2 ) + κ2

√
log T (τni)

−(αi∧ 1
2 ) (19)

We can solve (19) above and see immediately that if

τi >
21/αi∨2(ci + κ2

√
log T + κ2

√
logK)1/αi∨2

ni∆
1/αi∨2
i

,

then

R∗i > R∗ + 2

(
γi(niτi) + κ2

√
logK

niτi
+ κ2

√
log T

niτi

)
. (20)

Thus the event in (18c) fails to occur, completing the proof of the lemma.
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